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A GENEML MARTINGALE APPROACH
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an~~~t~~’~~ ~

A general me od of constructing system models for the solution of

discrete time stochastic control and estimation problems is presented.

The method involves the application of modern martingale theory and entails

C-.) the judicious choice of certain sigma—algebras and inartingales. General

LJ
j estimation equations are derived for observations taking values in a

countable space, and previously obtained estimation equations are exhibited

as special cases. Finally, an example of the application of these methods

to a stochastic control problem is analyzed.
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I. Introduction

Much recent research has been directed toward the solution o

estimation and stochastic control problems by means of the application

of modern martingale theory (l]—[8]. In this paper we will be concerned

with discrete time estimation and control problems in which the

observations take values in a countable set. In particular, we will

consider models of the form [11], [14]

x(t+l) = f
t
(~c
t
,~ (t)) + w(t+l) (1)

z(t+l) g~ (xt~~,zt,u(t)) + v(t+1) (2)

where x(t) is the state at time t , A {x(O),. . . ,x(t)} , z(t) is the

observation at t , z~ A {z(O),. . . ,z(t)}, w and v are noise processes , and

the control u(t) is measurable with respect to a—algebra a(zt) generated

by z~. Segall [2] first derived discrete time estimation equations for

1—variate point process observations; however, he only allows f~ ~ (1)

to depend on ~~~ (not on z~ , as we require here), and finds the one—step

predictor E[x(t)~ z
t
~~]. Brémaud [4] has generalized Segall’s work to

k—variate point process observations.

In Section II we will demonstrate a method for constructing a

system model leading to the solution of a given estimation or control

problem with any prespecified (classical) information structure. This t ~is accomplished by a judicious choice of sigma—algebras and martingales,

and includes the information structures of Segall [2], Brémaud [4],

Br~maud and Van Schuppen [5J,[6J, end ot.r problem (l)—(2) as spec
ial2
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cases. In Section III general estimation equations are derived for the

models of Section II; it is assumed that the observations take values

in a countable set. Vaca and Tretter [9] have derived analogous

equations using an approach based on likelihood functions. As an example

of (l)—(2), the control of a finite state Markov process is considered

in Section IV; as in continuous time [3], the separation principle holds

and a finite dimensional estimator is constructed.
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II. Abstract System Model and Estimation Equation P

Consider a discrete time observation process y(t) which is modulated

by the signal or state process x(t), where te {O,l,...,T}. Assume both

x( t) and y(t) are integrable processes. In this paper , we will restrict

the value of the observation process y(t) at time t to belong to a

countable set

By using the martingale decomposition method, we can construct a

general system model as follows. Let and be two increasing families

of sigma—algebras such that G
~~
J ~~~~ F~, ~ a{y(s) , s< t ’}, where t’ < t;

methods for judiciously choosing t’, G~, and for a particular problem

will be indicated below. Also, assume x(t) is Be
_measurable. Let

z~(t) A I(y(t)=c~3
),

where I is the indicator function; thus y(t) 
~ 

p~ z1
(t). Throughout

i=l
this paper, the observation will be descr ibed equivalently by either y( t)

or (z~ (t), i— l ,2,...). We define, for i~~l,2,...,

B
v(t+1) ~ x(t+l) — E (x(t+l))

G
v~(t+l) ~ z1

(t+l) — E t(z(t+l)],

p 8
where E 

t(.] denotes conditional expectation. Thus w(t+l) and v~(t+l)

.1 are 8t4] and G~+1 
aartingale difference processes~ respectively (1], (2].

is a A
~+1 

.artingale difference process if m(t+l) is measurable

with respect to and E t(m(t+l)) — 0. The reader is referred to

(1) for more details.

I
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In other words, we have the system model

x(t+l) — + w( t+l) (3)

z~ (t+1) — 
~i
(t
~~

)+sh
i
(t+l) (4)

where A E t[x( t+l) ] and ~~(t+l) E t[z~(t+l)).

It is desired to compute the least square estimates of x(t+l) given

the observations F
~,+i

; this estimate is the conditional mean

~(t+1~t’+l) A E
t+]

(x(t+l)). Let

(t+l) — ~c(t+lIt
’+l) — E t ((t+]•)) .

— ~(t+lIt ’+l) - 
~tlt ’

F , . H
where 

~~ 
~ E Then it is easy to see that (t+l) is an

martingale difference process. Similarly , let

— z~(t ’+l) — B t [(t t+l) ]

— z~(t’+l) 
— i~~(t’+l)

F ,
where ii~~(t ’+l) — B ~ (p

1(t ’+l)) . Also , ~(t ’+l) is an F~ ,~~1
_martin~ale

difference process. Thus we have the abstract estimation equations

- 

~~~ 
+ (t+l) (5)

z~ (t ’+1) - ~~(t’+l) + ~(t ’+l) . (6)

i— l ,2,... . 
.

In the next section, we will determine (t+l) in (5) in terms of the

observation process (6) and Fe,, thus generating a “recursive” estimation r
equation.

This model provides a general framework within which many problems
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can be analyzed by proper choice of G~, ~~~~
‘ and t’. For example, by

t+l t t+l t ,choosing G
~ 

— a{x ,y  ) — a{x ,z ) ,  B~ — G
~_1, 

and t = t — 1 , we

arrive at Segall’s framework for deriving the one—step predictor [2];

notice from (3) that this yields a system equation of the form

x(t+l) ~~~~~ y
t_l
) + w(t+l) .  - (7)

The model of Br~maud and Van Schuppen [5], (6] for deriving the one—step

predictor is obtained by setting 8~ 
= 0

t—l 
and t’ t—l . The model of

(l)—(2) can be accommodated by defining G
~ 

a{xtl1,yt) and = a{x t,yt},

so that we have = f
t

(xt,yt) and = g~ (xt+l,yt). The filtering and •~ -

prediction problems for this model are derived by setting t’ = t and t ’ < t ,

respectively. Other problems, including the smoothing problem, can be

approached similarly.

Estimation equations for special cases (such as those mentioned

above) will follow immediately , by the proper choice of a—algebras ,

from the results of the next section. Thus the need to rederive such

estimation equations for each special case is eliminated.

L. 
~~~~~~~~~~~~
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III. General Estimation Equations

As noted before, we need to determine ~(t+l) in (5) in terms of the

observation process (6) and Fe,. The general representation of the

F~,+i
_martingale difference ~(t+l) is described in the following theorem.

The proof is similar to that of Br~maud (4, p.36] for a special case.

Theorem 1: Consider the system model (3)—(4). If y(t) takes values in a

countable set {p1,p2,. . .} , where we assume that each p
1 
occurs with

non—zero probability so that ii~(t’+l) > O for all i, then ~(t+l I t’+l) can

be expressed in the form

~(t+ljt ’+l) 
~tIt

’ + 

~~~~~~~ 

E t ((f +v(t+l))(z (t’+l) _
~~i

(t ’
~~

))]

z
i
(t’+l)

Proof : Notice that

~c(t+lIt’+l) 
— 

~tIt ’ 
— E ::i(x(t+l) — 

~tIt ’~
— E + w(t+l) — 

~~
tk’ ’

Thus, we want to prove that, with probability one,

— 

i~1 i
t+1 E

t
f(ft

+w( t+l))

(z
1
(t’+l) _~~~(t’+l))J z

1
(t’+l) (8)

— 7
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By Lemma 10.1.3 of [13], (8) holds if and only if

E[(f
t
+w(t+l)_f

tI~~
,) H

~
,+iJ ~~~~~~~~~~~~~~~ 

E t [(f
t
+w(t+l))

(z
1
(t’+l) -~~1

(t’+l))]~ • [z~(t ’+l)]] H~
,+1

for all F
~,+i 

measurable random variables which are almost surely

bounded. Also, by Doob’s representation theorem [16], we have

= H(t ’+l ,y(t ’+l)) (10)

where H(t ’+l ,p1), 1 1 ,2,..., are F
~
,+1

_predictable (E (H(t’+1,p
1
))

bounded processes.

After some calculations, the right—hand side of (9) becomes

I H(t’+l,p1) ‘
~~‘ 

1
B 

~~(t ’+l) E EUt+w(t4~) f ~It ,) z1(t
’+l)] z~ (t ’+l)~

]

By (10) , we have that the left—hand side of (9) can be written

E[(f
~
+v(t+1)_

~~~i~~
,) H

~
,÷1
] — 

~ 
(f
~ 
(t+l)_

~~~j~~
,) H(t’+l,p

1
)

i—i

zj(t’+l)}

Thus, one needs only check the equality .

B 
~~~~~~~~~~~~~~~~~~ 

H(t ’+l,p1) z
1
(t ’+l)~

ll(t’+l,p1) F ,
— E 

~1(t’+1) 
E ~ [(f

~
+w(t+l) 

~~~~~~~~~~~~~~~~~ 

z
1
(t’+l)] zj (t 1+l)

1 
(11)

8
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But the right—hand side of (11) is equal to (using predictability of H)

F , H(t’+l,p)~~ F
E B 

j~1
(t ’+l) E [Cf +w (t+1)—f ,,) z1

(t’+l)] z
i(t

’+l)

E~~H(t’+l,p1
) E t [(f

t
+w(t+l)_f

tlt
,) z

1
(t’+l) ]~

= E E  t [H(t I + 1p ) ( f  +w(t+l)~~ f 1 , )  z~(t’+l)]~

which equals the left—hand side of (11). This proves the theorem.

The following corollaries specialize Theorem 1 by judicious choice

of t’ and the sigma—algebras G
~ 
and

Corollary 1. Under the assumptions of Theorem 1, if we set — o{xt,yt},

= a{x t+l,yt}, and t ’ = t , we have the filtering result

F

~(t+ll t+l) — 

~tlt 
+ 

j j u j (t+] ) E 
t
[(f+(t+l))( (+l)~~~~(+l))]~

z1(t+l).

Corollary 2. Under the assumption of Corollary 1 but with t’ = t—1 , we

have the one—step predictor

F
~~(t+lIt )  — 

~~I t l  
+ 

~ (t) 
E 

t_l
[(f +v(t+l))(z (t) —p

1
(t))] z~(t).

1—1 i

If y(t) takes its values in a finite set {p1,...,p 3 (i.e., y(t) =

I P~z1
(t)), then (ae a special case of Theorem 1) ~(t:ljt ’+l) can be

il

9 

. ---

~~~~~~~~~~~
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expressed in the form

~(t+lIt
’+l) = 

~~ ~~~~~~(t ’+l) E t [ ( f + ( t+l))( (t’+l)~~~~(’+l))]

zj(t’+l)} . (12)

However, an alternative proof which is of independent interest is also

presented here; the proof is based upon the martingale representation

theorem [5].

Corollary 3. Under the assumptions of Theorem 1, if y(t) e {p
1
,.. .,p },

then ~(t+lIt
’+l) can be expressed as in (12).

Proof: Assume the signal process x(t) is scalar. By the inartingale

representation theorem and the innovations theorem [5], there exist

predictable processes K~(t ’+l), i 1 ,. ..,m, such that

(t+l) = c(t+llt ’+l) — 

~~~~~~~ 
= 

~ K~(t’+l) [z
i
(t’+l) — j~1

(t’+l)]
1=1

since ~(t+l) is an F~
,+1 martingale difference process. Note that

m
z (t’+l) — 1 , (13)

1—1

m

~ (t’+l) 1. (14)
i—i I

Now ,
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~ K
1
(t’+l) [z~(t’+1) - 

~i
(t ’+1)]

i=l

Tn-i m-l
— ~ K~(t ’+1) [z

i
(t ’+l)_i

~i
(t ’+l) ] — 

~ 
K
m
(t’+l) [zj(t’+l)_j i(t’+l)]

1=1 i—i

m-l
= ~~ (K

1
(t ’+l) — K (t’+l)) [z~(t ’+1) —

1=1

The first equality above is obtained by using (13) and (14).

Let Li(t
’+l) = K~(t’+1) — K (t’+l). It is easy to see that L~(t’+l)

is an F
~
,+1 predictable process. Thus, we have

rn-i

~(t+l~t’+l) — f , = 
~ 

L
i
(t’+l) [z

i
(t ’+l) — j

1
(t ’+l)] (15)

1=1

Multiplying both sides by z
1
(t ’+l)—~~1

(t ’+l) for i=1 ,...,m—l, then

taking conditional expectations with respect to Fe ,, we have

r

I 11

~2
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E + w( t+l)) (z
1
(t’+l) —~i

1
(t ’+i) ) ]

_E [(f
~
+w(t+1)) (Z

m 1
(t’+l) —

j
1
(t ’+i)—j~~(t ’+l) - —j~1

(t ’+l) ji
2
(t’+l) —~1

(t ’+1)j~~~1(t’+l)

— 

—j~2 (t ’+i) j~1
(t’+1) i2(t

’+l) — j~~(t ’+i) —i 2
(t’+i)j~~~1(t

’+l)

—ji
1
(t ’+l)~i

1
(t ’+i)

L
1
(t’+l) 

- - 

L
1
(t’+l)

•
=

L (t’+l) L (t’+l)
rn—i m—l

It can easily be shown that A is a positive definite matrix, so

we can find a unique solution for L
1
(t’+l) , i—l ,...,m—l. By sme

• calculations, we have

L1(t
’+i) — 

~~(t’+l) E + v(t+l))(z~(t’+l) —

F ,
— 

~m
(t’

~~~ 
B + w(t+i))(z 1(t ’+l) —
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Substituting into (15), we have

c(t+l lt ’+l) 

~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ 

E t [(f
t+w(t+i))(zi

(t~+l) 
_
~~1

(t’+1)))(

~~~~~t’+l)

• (z
1
(t ’+l)—iI~ (t ’+l))

= 
i~i~~~i

(t t
~
4) E

t
[(f +w(t+i))(z1(t~+

i)_~~~(t~+l))J~

• (z~(t’+l)~~ i~1
(t’+l))

- 
~~~~~~(~ ‘+l) 

E t’
[(f +v(t+l))(z (t’+l) _

~~~
(t’+i))J(

• z~(t’+i).

The second equality is obtained via (13) and (14). After expanding

the second equality and interchanging the aummatlon and conditional

expectation, the last equality is also obtained by (13) and (14). Thus,

the theorem is proved for scaiar x(t). Obviously, we can generalize to

vector processes x(t) by using each component of x(t) in the above proof.

Then , we combine all the components to get the result, which remains the

same in the vector case.

1:

13

-~~~~~ - - 
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Theorem 2: Under the assumptions of Theorem 1, the smoothed estimate

satisfies

F
x(tI~)=~(tlt) + 

s~t ~~l
k(S+l ) 

E [(f
~
+w(t+1))(z

i
(s+1)

~~~
Jj(s+i))] ~

z
i

(s+i)

(16)
for t > t .

Proof: Let

F F
n(s+l) = E °44(x(t)) — E 

8
(x(t)) (17)

f or a > t. Then it is easy to prove that n(s+l) is an F5~1
_martingaie

difference process. By summing the terms (17) from s t  to s t—1 , we

• have t—l

~(tI~) = ~(t It) + ~ rp (a+l) .
s—t

By using a proof similar to that of Theorem 1, it can Fe shown that 
•

F
i~(s+1) = 

~ ~~~~~~~~~~~~~~~~~ 

B 8[(f
~~

+w(t+l))(z j (s+l) _~~~(s+l))) z~(s+1)

Thus, we have the result (16).

Remarks: (i) The form of the estimation equations obtained by
I

Segall [2] for a special case follows from (12) by a simple calculation.

(ii) Results analogous to Corollaries 1 and 2 and Segall’s I r
results [2) can also be derived for the smoothed estimate. In addition,

estimation equations for other information structures can be derived by

I 

14
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judicious choice of G
~
, B~, and t’ (or t in smoothing problems), as

discussed at the end of Section II.

(iii) In general, the optimal nonlinear estimator is infinite

dimensional; in other words, ~(t+ilt
’+1) will depend on all, higher order

conditional moments. P.epreaentation results for higher order conditional

moments can also be derived by using the methods described above.
F

(iv) In particular, in Corollary 1, 
~tk 

— E t[f] is actually

the one step predicted estimate 
~(t+llt). Since is a function of x~

and y , x(t+llt) cannot be computed simply in terms of x(tlt), but in

fact depends in general on all of the conditio~a1 probability distributions

P(x(s)IF
~

) ,  s<t. However, a special case which is given in the next’

section will result in a finite dimensional recursive estimator.

15
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IV. Example —— Stochastic Control Problem

In this section, we present an example illustrating the application

of the techniques in Section III to a class of stochastic control problems

of the form (l)—(2). For these problems the optimal filter is finite

dimensional and the separation principle [10] holds (that is, the optimal

control u(t) is only a function of the filtered estimate &(t~t)). Thus,

we can see the strong relationship between the estimation and stochastic

control problems. This example is motivated by the corresponding

1—variate continuous time problem [3] and the 1—variate discrete time

prediction example of [2]. For a different approach, see [12].

Consider a stochastic control problem in which the signal is a

controlled finite state Markov chain x(t) such that x(t) c{y1
,y
2
,...,y J .

Let the initial probabilities be

1T~~~ = P{x(0)=yk},

and transition probabilities be

w~~ (u( t) )  = P{x(t+1)1Iy
jIx(

t)uI yk, u(t))

where u(t) is the control at t ime t. Define, as in [2], [3],

1 if x(t)—y
u~ (t) — .

0 otherwise

and the n—vector

cz(t) — [a1(t) ... a ( t)]T
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and the nxn matrix

k
— (w~~(u(t))].

The observation process y(t) is assumed to take values in a countable

set 
~~1’~ 2’•••’~a

3 an~ the equivalent point processes z1
(t) are def ined as in

Section II. As in Corollaries 1—2, we let t’ =t , Gt
(u) — a(xt~~,y

t},

B
~
(u) — o{xt,yt), and F

~
(u) = 0{~ t), where u is the control law. The

admissible control laws are such that u(t) is F
~

(u) measurable , and an

optimal control is one that optimizes the performance index

T— 1
J(u) — E{LT(x(T)) + ~ 

L
~
(x(t),u(t))) ,

t—O

where L
~

(x( t) ,u(t)), t—0,...,T, are measurable functions.

We first derive a system model of the form (3)—(4) with the relevant

choice of a—algebras. Let

w (t+l) — u (t+i) — ~ ir~~ (u(t)) a
k

(t);
k—i

then w~(t+l) is a B~~1(u)_martingale difference process, since

- 8 8 8 5
E ~[ (t+l) ] — E tEa (t+l)] — B t [ ~ irki( (t)) ak

(t)]
k—i

- ~ ~~~(u( t)) u
k
(t) - 

~ n~~ (u(t~~ ak(t) - 0k—i k—i

In vector form, the signal model thus becomes

a(t+l) — Q
’
~(u(t))ci(t) + w(t+l) . (18) 

‘

17
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In an analogous manner to [2],

P{x(t+l)=Y~~ y(t)rIpjlX (t)=yk,U(t_l))

and define the flX ~~~ matrix

= [
i
s’
~~
(u(t_l))].

The observations are given by (4), where 
-

G n n

~i
(t
~~

) A E t[(t+l)] = ~ ~s~~,1(u(t)) ak
(t+1)

j=l k=l

= i~ iST
+i u t ~~ a(t+l) (19)

where 1
~~~

= [l.... 1] is a n—row vector. Now we substitute (18) and (19)

into the filtering equation (12) and obtain a finite dimensional filter as

follows:

&(t+lI t+l) Q~(u(t)) &(t~t) + 
~~

[
diag (~~ w~~~u t~~& (tlt)) S (u(t~~ tnxJ ,

- — Q~(u(t)) &(t~t) i 1(t+l)] ~ z1(t+1) (20)

where i~~(t+l) — 1lxn jS~+1
(u(t)) Q~(u(t)) &(t I-t ) and diag(B

1
) denotes a

diagonal nxn matrix wi th the diagonal element ~~~. The initial condition

is (0I0) — E(a(0) } — [ i r ~ .... ~fl
]
T

Since

x(t+l) — 1y
1
.... y )a( t+l) ,

18

- - - ~~~- - 
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we have
x( t+l~t+i) .... y ] &(t+ll t+l)

The perf ormance index is

T-l
J(u) = E{L

T
(x(T) ) + 

~~ 
L
~

(x( t) , u(t))} -

t=0

- T-l
= E{ [L

T
(y
l
) ...L

T
(y)] a(T) + 

~ 
[L
~
(v i,u(t)) ... L~

( y , u(t) ) ] a ( t) }
t=0

T—l
— E {L

T 
&(TjT) + 

~ 
L~ (u(t)) & ( t l t ) }  , (21)

t—0

where L
T
, 
~~ 

are vectors defined in the obvious manner. Thus, the

separation principle holds in this case since we have perfect observations

of &(tl t) for all t; that is, there is no loss of generality in considering

only control laws of the form u(t) = u(&(t~t)). Hence if the dynamic

programming algorithm for the perfect observation problem (20)—(2l) has a

solution, then the optimal feedback control u(t) for the original problem

will only depend on F
t
(u) via a(tlt), which evolves according to the finite -

•

dimensional filtering equation (20). -

• 

- -

•
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V. Conclusion

A more general method of constructing system models for the

solution of discrete time stochastic control and estimation problems

has been presented. It involves the judicious choice of certain

a—algebras generated by the signal and observation processes. General

estimation equations have been derived, and numerous special cases have

been considered. The relationship between these estimation results and

stochastic control problems has been demonstrated by the example of

finite state Markov signals, for which the separation principle holds

and a finite dimensional filter exists. The representation theorem, and

hence the estimation equations, become much more diff icult to in terpret

if the observations take values in an uncountable space [5], [6], and

explicit results are difficult to obtain. However, explicit finite

dimensional estimators for a class of nonlinear systems with additive

Gaussian observation noise have been derived in [153.

-4-
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